Giải bài tập 2.41 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:26:30

Đề bài

Trong không gian Oxyz, cho các điểm \(A\left( {4;2; - 1} \right),B\left( {1; - 1;2} \right)\) và \(C\left( {0; - 2;3} \right)\).
a) Tìm tọa độ của vectơ \(\overrightarrow {AB} \) và tính độ dài đoạn thẳng AB.
b) Tìm tọa độ điểm M sao cho \(\overrightarrow {AB} + \overrightarrow {CM} = \overrightarrow 0 \).
c) Tìm tọa độ điểm N thuộc mặt phẳng (Oxy), sao cho A, B, N thẳng hàng.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về thiết lập tọa độ của vectơ theo tọa độ hai đầu mút để tìm tọa độ: Trong không gian Oxyz, cho hai điểm \(M\left( {{x_M},{y_M},{z_M}} \right)\) và \(N\left( {{x_N};{y_N};{z_N}} \right)\).

Khi đó, \(\overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}} \right)\).

b) Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ điểm M: Trong không gian, cho hai vectơ \(\overrightarrow a  = \left( {x;y;z} \right)\) và \(\overrightarrow b  = \left( {x';y';z'} \right)\). Khi đó, \(\overrightarrow a  = \overrightarrow b \) nếu và chỉ nếu \(\left\{ \begin{array}{l}x = x'\\y = y'\\z = z'\end{array} \right.\).

c) Sử dụng kiến thức về hai vectơ cùng phương để chứng minh ba điểm thẳng hàng: Nếu \(\overrightarrow {MN}  = k\overrightarrow {MP} \) (k là số thực) thì \(\overrightarrow {MN} ,\overrightarrow {MP} \) cùng phương và ba điểm M, N, P thẳng hàng.

Lời giải chi tiết

a) \(\overrightarrow {AB}  = \left( {1 - 4; - 1 - 2;2 + 1} \right) = \left( { - 3; - 3;3} \right) \Rightarrow \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2} + {3^2}}  = 3\sqrt 3 \)

b) Gọi M (x; y; z) thì \(\overrightarrow {MC}  = \left( { - x; - 2 - y,3 - z} \right)\).

Vì \(\overrightarrow {AB}  + \overrightarrow {CM}  = \overrightarrow 0  \Rightarrow \overrightarrow {AB}  = \overrightarrow {MC}  \Rightarrow \left\{ \begin{array}{l} - x =  - 3\\ - 2 - y =  - 3\\3 - z = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\\z = 0\end{array} \right.\). Do đó, M(3; 1; 0).

c) Vì N thuộc mặt phẳng (Oxy) nên tọa độ điểm N là N(x; y; 0)

Ta có: \(\overrightarrow {AN} \left( {x - 4;y - 2;1} \right);\overrightarrow {BN} \left( {x - 1;y + 1; - 2} \right)\)

Để A, B, N thẳng hàng thì hai vectơ \(\overrightarrow {AN} ,\overrightarrow {BN} \) cùng phương. Do đó, \(\overrightarrow {AN}  = k\overrightarrow {BN} \) (với k là số thực bất kì)

Suy ra, \(\left\{ \begin{array}{l}x - 4 = k\left( {x - 1} \right)\\y - 2 = k\left( {y + 1} \right)\\1 =  - 2k\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x - 4 =  - \frac{1}{2}\left( {x - 1} \right)\\y - 2 =  - \frac{1}{2}\left( {y + 1} \right)\\k = \frac{{ - 1}}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\). Vậy N(3; 1)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"