Giải bài tập 2.38 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:26:31

Đề bài

Trong không gian Oxyz, cho các điểm \(A\left( {2; - 1;3} \right),B\left( {1;1; - 1} \right)\) và \(C\left( { - 1;0;2} \right)\).
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm M thuộc trục Oz sao cho đường thẳng BM vuông góc với đường thẳng AC.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là: \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

b) Sử dụng kiến thức về tọa độ của điểm trong không gian để tính: Nếu điểm A thuộc trục Oz thì tọa độ của điểm A là A(0; 0; z).

Sử dụng kiến thức về nhận xét biểu thức tọa độ tích vô hướng trong không gian để giải: Trong không gian Oxyz, cho \(\overrightarrow a  = \left( {x;y;z} \right)\) và \(\overrightarrow b  = \left( {x';y';z'} \right)\) là hai vectơ khác \(\overrightarrow 0 \). Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) vuông góc với nhau nếu và chỉ nếu \(xx' + yy' + zz' = 0\)

Lời giải chi tiết

a) Vì G là trọng tâm của tam giác ABC nên \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{2 + 1 - 1}}{3} = \frac{2}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{ - 1 + 1 + 0}}{3} = 0\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3} = \frac{{3 - 1 + 2}}{3} = \frac{4}{3}\end{array} \right.\)

Vậy tọa độ trọng tâm G là: G\(\left( {\frac{2}{3};0;\frac{4}{3}} \right)\).

b) Vì M thuộc trục Oz nên M(0; 0; z).

Ta có: \(\overrightarrow {BM} \left( { - 1; - 1;z + 1} \right),\overrightarrow {AC} \left( { - 3;1; - 1} \right)\)

Vì đường thẳng BM vuông góc với đường thẳng AC nên

\(\overrightarrow {BM} .\overrightarrow {AC}  = 0 \Leftrightarrow \left( { - 1} \right).\left( { - 3} \right) + \left( { - 1} \right).1 + \left( {z + 1} \right)\left( { - 1} \right) = 0\)

\( \Leftrightarrow 2 - z - 1 = 0 \Leftrightarrow z = 1\).

Vậy M(0; 0; 1) thì đường thẳng BM vuông góc với đường thẳng AC.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"