Đề bài
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.
Lời giải chi tiết
Gọi O là tâm hình chữ nhật ABCD. Khi đó, O là trung điểm của AC, BD.
Suy ra \(\overrightarrow {OC} = - \overrightarrow {OA} ,\overrightarrow {OD} = - \overrightarrow {OB} \)
Ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OC} = 2\overrightarrow {SO} + \left( {\overrightarrow {OA} - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)
\(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OD} = 2\overrightarrow {SO} + \left( {\overrightarrow {OB} - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)
Do đó, \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)