Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:26:35

Đề bài

Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là

A. \(\left( {5;4; - 1} \right)\).

B. \(\left( { - 5; - 4;1} \right)\).

C. \(\left( {1;2; - 1} \right)\).

D. \(\left( { - 1; - 2;1} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là: \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết

Vì G là trọng tâm của tam giác ABC nên

\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.2 - 1 - 0 = 5\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.1 - 0 + 1 = 4\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.0 + 1 - 2 =  - 1\end{array} \right.\)

Vậy tọa độ điểm C là \(\left( {5;4; - 1} \right)\)

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"