Giải bài tập 2.28 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:26:36

Đề bài

Cho tứ diện đều ABCD có độ dài cạnh bằng a, gọi M là trung điểm của đoạn thẳng CD. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AM} \) bằng
A. \(\frac{{{a^2}}}{4}\).
B. \(\frac{{{a^2}}}{2}\).
C. \(\frac{{{a^2}}}{3}\).
D. \({a^2}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về công thức xác định tích vô hướng của hai vectơ trong không gian để tính: Trong không gian, cho hai vectơ \(\overrightarrow a \), \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Tích vô hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là một số, kí hiệu là \(\overrightarrow a  \cdot \overrightarrow b \), được xác định bởi công thức sau: \(\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Tam giác ACD có ba cạnh bằng a nên tam giác ACD đều, AM là đường trung tuyến đồng thời là đường cao nên \(AM = \frac{{a\sqrt 3 }}{2}\).

Tam giác CBD có ba cạnh bằng a nên tam giác CBD đều, BM là đường trung tuyến đồng thời là đường cao nên \(BM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định côsin vào tam giác ABM ta có:

\(\cos \widehat {BAM} = \frac{{A{M^2} + A{B^2} - M{B^2}}}{{2AB.MB}} = \frac{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {a^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}{{2.\frac{{a\sqrt 3 }}{2}.a}} = \frac{{\sqrt 3 }}{3}\)

\(\overrightarrow {AB} .\overrightarrow {AM}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \left( {\overrightarrow {AB} ;\overrightarrow {AM} } \right) = a.\frac{{a\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{3} = \frac{{{a^2}}}{2}\)

Chọn B

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"