Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:26:40

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 16 SGK Toán 12 Kết nối tri thức

Tính và so sánh:

a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);

b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx} \);

c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx} \).

Phương pháp giải:

Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

Lời giải chi tiết:

a) Ta có: \(\int\limits_0^1 {2xdx}  = {x^2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\), \(2\int\limits_0^1 {xdx}  = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\) nên \(\int\limits_0^1 {2xdx}  = 2\int\limits_0^1 {xdx} \)

b) Ta có: \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx}  = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\)

\(\int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx}  = \frac{{{x^3}}}{3}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} - 0 + \frac{1}{2} - 0 = \frac{5}{6}\)

Do đó, \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx}  = \int\limits_0^1 {{x^2}dx}  + \int\limits_0^1 {xdx} \)

c) Ta có: \(\int\limits_0^3 {xdx}  = \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\0\end{array} \right. = \frac{{{3^2}}}{2} - 0 = \frac{9}{2}\); \(\int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx}  = \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\1\end{array} \right. = \frac{1}{2} - 0 + \frac{{{3^2}}}{2} - \frac{1}{2} = \frac{9}{2}\)

Do đó, \(\int\limits_0^3 {xdx}  = \int\limits_0^1 {xdx}  + \int\limits_1^3 {xdx} \)


LT3

Trả lời câu hỏi Luyện tập 3 trang 17 SGK Toán 12 Kết nối tri thức

Tính các tích phân sau:

a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} \);

b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} \);

c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).

Phương pháp giải:

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có:

+ \(\int\limits_a^b {kf\left( x \right)dx}  = k\int\limits_a^b {f\left( x \right)dx} \) (k là hằng số)

+ \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_a^b {g\left( x \right)dx} \)

+ \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  - \int\limits_a^b {g\left( x \right)dx} \)

Lời giải chi tiết:

a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx}  = 2\int\limits_0^{2\pi } {xdx}  + \int\limits_0^{2\pi } {\cos xdx}  = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}2\pi \\0\end{array} \right. + \sin x\left| \begin{array}{l}2\pi \\0\end{array} \right.\)

\( = {\left( {2\pi } \right)^2} - 0 + \sin 2\pi  - \sin 0 = 4{\pi ^2}\)

b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx}  = \int\limits_1^2 {{3^x}dx}  - 3\int\limits_1^2 {\frac{1}{x}dx}  = \frac{{{3^x}}}{{\ln 3}}\left| \begin{array}{l}2\\1\end{array} \right. - 3\ln \left| x \right|\left| \begin{array}{l}2\\1\end{array} \right. = \frac{1}{{\ln 3}}\left( {{3^2} - {3^1}} \right) - 3\ln 2 + 3\ln 1\)

\( = \frac{6}{{\ln 3}} - 3\ln 2\)

c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx}  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\cos }^2}x}}dx}  - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}dx = \tan x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right. + \cot x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right.} \)

\( = \tan \frac{\pi }{3} - \tan \frac{\pi }{6} + \cot \frac{\pi }{3} - \cot \frac{\pi }{6} = \sqrt 3  - \frac{{\sqrt 3 }}{3} + \frac{{\sqrt 3 }}{3} - \sqrt 3  = 0\)


LT4

Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 12 Kết nối tri thức

Tính \(\int\limits_0^3 {\left| {2x - 3} \right|dx} \).

Phương pháp giải:

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx}  + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\).

Lời giải chi tiết:

\(\int\limits_0^3 {\left| {2x - 3} \right|dx}  = \int\limits_0^{\frac{3}{2}} {\left| {2x - 3} \right|dx}  + \int\limits_{\frac{3}{2}}^3 {\left| {2x - 3} \right|dx}  = \int\limits_0^{\frac{3}{2}} {\left( {3 - 2x} \right)dx}  + \int\limits_{\frac{3}{2}}^3 {\left( {2x - 3} \right)dx} \)

\( = \left( {3x - {x^2}} \right)\left| \begin{array}{l}\frac{3}{2}\\0\end{array} \right. + \left( {{x^2} - 3x} \right)\left| \begin{array}{l}3\\\frac{3}{2}\end{array} \right. = \left[ {\left( {\frac{9}{2} - \frac{9}{4}} \right) - 0} \right] + \left[ {\left( {{3^2} - 3.3} \right) - \left( {\frac{9}{4} - \frac{9}{2}} \right)} \right] = \frac{9}{2}\)


VD2

Trả lời câu hỏi Vận dụng 2 trang 17 SGK Toán 12 Kết nối tri thức

Giá trị trung bình của hàm số liên tục f(x) trên đoạn [a; b] được định nghĩa là \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Giả sử nhiệt độ (tính bằng \(^oC\)) tại thời điểm t giờ trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa ở một địa phương vào một ngày nào đó được mô hình hóa bởi hàm số \(T\left( t \right) = 20 + 1,5\left( {t - 6} \right),6 \le t \le 12\). Tìm nhiệt độ trung bình vào ngày đó trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa.

Phương pháp giải:

Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

Lời giải chi tiết:

Nhiệt độ trung bình vào ngày đó từ khoảng thời gian 6 giờ sáng đến 12 giờ trưa là:

\(\frac{1}{{12 - 6}}\int\limits_6^{12} {\left[ {20 + 1,5\left( {t - 6} \right)} \right]dt}  = \frac{1}{6}\int\limits_6^{12} {\left( {11 + 1,5t} \right)dt = \frac{1}{6}\left( {11t + \frac{3}{4}{t^2}} \right)\left| \begin{array}{l}12\\6\end{array} \right.} \)

\( = \frac{1}{6}\left[ {\left( {11.12 + \frac{3}{4}{{.12}^2}} \right) - \left( {11.6 + \frac{3}{4}{{.6}^2}} \right)} \right] = 24,{5^0}C\)

Vậy nhiệt độ trung bình vào ngày đó trong trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa là \(24,{5^0}C\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"