Giải bài tập 3.2 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức

2024-09-14 19:26:46

Đề bài

Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:

Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:

Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).

+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).  

Lời giải chi tiết

Ta có bảng số liệu với giá trị đại diện của nhóm là:

Mức thu nhập trung bình của người lao động nhà máy A là:

\(\frac{{6,5.20 + 9,5.35 + 12,5.45 + 15,5.35 + 18,5.20}}{{20 + 35 + 45 + 35 + 20}} = \frac{{25}}{2}\) (triệu đồng)

Mức thu nhập trung bình của người lao động nhà máy B là:

\(\frac{{6,5.17 + 9,5.23 + 12,5.30 + 15,5.23 + 18,5.17}}{{17 + 23 + 30 + 23 + 17}} = \frac{{25}}{2}\) (triệu đồng)

Nhà máy A: Ta có cỡ mẫu \(n = 155\). Giả sử \({x_1},{x_2},...,{x_{155}}\) là mức thu nhập của người lao động nhà máy A và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 38,75\) và \(20 < 38,75 < 20 + 35\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {8;11} \right)\) và tứ phân vị thứ nhất là: \({Q_1} = 8 + \frac{{\frac{{155}}{4} - 20}}{{35}}.3 = \frac{{269}}{{28}}\)

Vì \(\frac{{3n}}{4} = 116,25\) và \(20 + 35 + 45 < 116,25 < 20 + 35 + 45 + 35\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {14;17} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 14 + \frac{{\frac{{3.155}}{4} - \left( {20 + 35 + 45} \right)}}{{35}}.3 = \frac{{431}}{{28}}\)

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_1}}} = \frac{{431}}{{28}} - \frac{{269}}{{28}} = \frac{{81}}{{14}}\)

Nhà máy B: Ta có cỡ mẫu \(n = 110\). Giả sử \({x_1},{x_2},...,{x_{110}}\) là mức thu nhập của người lao động nhà máy B và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 27,5\) và \(17 < 27,5 < 17 + 23\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {8;11} \right)\) và tứ phân vị thứ nhất là: \(Q{'_1} = 8 + \frac{{\frac{{110}}{4} - 17}}{{23}}.3 = \frac{{431}}{{46}}\)

Vì \(\frac{{3n}}{4} = 82,5\) và \(17 + 23 + 30 < 82,5 < 17 + 23 + 30 + 23\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {14;17} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 14 + \frac{{\frac{{3.110}}{4} - \left( {17 + 23 + 30} \right)}}{{23}}.3 = \frac{{719}}{{46}}\)

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = \frac{{719}}{{46}} - \frac{{431}}{{46}} = \frac{{144}}{{23}}\)

Vì \({\Delta _{{Q_1}}} < {\Delta _{{Q_2}}}\) nên mức thu nhập của người lao động nhà máy B biến động nhiều hơn.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"