Giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:27:25

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về hệ số góc của tiếp tuyến đồ thị để tính: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\). 

Lời giải chi tiết

Vì hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) nên \(f'\left( x \right) = {\left( {x - 1} \right)^2}\)

Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {{{\left( {x - 1} \right)}^2}dx}  = \int {\left( {{x^2} - 2x + 1} \right)dx}  = \frac{{{x^3}}}{3} - {x^2} + x + C\)

Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên M(0; 0).

Do đó ta có: \(f\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(f\left( x \right) = \frac{{{x^3}}}{3} - {x^2} + x\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"