Giải bài tập 5.4 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:27:43

Đề bài

Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) song song với trục Ox và vuông góc với mặt phẳng \(\left( Q \right):x + 2y - 3z + 1 = 0\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Lời giải chi tiết

Gọi (P) là mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) song song với trục Ox và vuông góc với mặt phẳng (Q).

Ta có: \(\overrightarrow {{n_Q}} \left( {1;2; - 3} \right)\), trục Ox có một vectơ chỉ phương là \(\overrightarrow {{n_1}} \left( {1;0;0} \right)\).

\(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_1}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 3}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\1&0\end{array}} \right|} \right) = \left( {0; - 3; - 2} \right)\)

Vì (P) song song với trục Ox và vuông góc với (Q) nên (P) nhận \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_1}} } \right] = \left( {0; - 3; - 2} \right)\) làm một vectơ pháp tuyến.

Mà (P) là mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) nên phương trình (P) là:

\(0\left( {x - 2} \right) - 3\left( {y - 3} \right) - 2\left( {z + 1} \right) = 0 \Leftrightarrow 3y + 2z - 7 = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"