Giải bài tập 5.22 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:27:56

Đề bài

Tính góc giữa đường thẳng \(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{2} = \frac{{z + 2}}{3}\) và mặt phẳng \(\left( P \right):x + y + z + 3 = 0\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\). và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {A;B;C} \right)\). Khi đó: \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Lời giải chi tiết

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( { - 1;2;3} \right)\), mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1;1;1} \right)\). Ta có: \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\left( { - 1} \right).1 + 2.1 + 3.1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {3^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{4}{{\sqrt {42} }}\)

Do đó, góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) khoảng \(38,{1^o}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"