Giải bài tập 9 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:28:48

Đề bài

Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD và M là trung điểm của đoạn thẳng AG. Khi đó \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} \) bằng

A. \(\overrightarrow {MG} \).

B. \(2\overrightarrow {MG} \).

C. \(3\overrightarrow {MG} \).

D. \(4\overrightarrow {MG} \).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc ba điểm để tính: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Sử dụng kiến thức về hệ thức vectơ về trọng tâm của tam giác để tính: Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Lời giải chi tiết

Vì M là trung điểm của AG nên \(\overrightarrow {MA}  =  - \overrightarrow {MG} \).

Vì G là trọng tâm của tam giác BCD nên \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  =  - \overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {GB}  + \overrightarrow {MG}  + \overrightarrow {GC}  + \overrightarrow {MG}  + \overrightarrow {GD} \)

\( = 2\overrightarrow {MG}  + \left( {\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right) = 2\overrightarrow {MG} \)

Chọn B

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"