Giải bài tập 24 trang 92 SGK Toán 12 tập 2 - Kết nối tri thức

2024-09-14 19:28:55

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi G là trọng tâm của tam giác BC’D’.

a) Chứng minh rằng \(\overrightarrow {AG}  = \frac{2}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right)\).

b) Tính theo a độ dài đoạn thẳng AG.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc hình hộp để giải bài toán: Cho hình hộp ABCD.A’B’C’D’. Khi đó, ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)

Sử dụng kiến thức về độ dài của vectơ trong không gian để tính: Độ dài của vectơ trong không gian là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. Độ dài của vectơ \(\overrightarrow a \) được kí hiệu là \(\left| {\overrightarrow a } \right|\).

Lời giải chi tiết

a) Gọi H là tâm của hình lập phương ABCD.A’B’C’D’. Khi đó, H là trung điểm của AC’. Do đó, \(\overrightarrow {AH}  = \overrightarrow {HC'}  = \frac{1}{2}\overrightarrow {AC'} \).

Vì G là trọng tâm của tam giác BC’D’ và C’H là đường trung tuyến của tam giác BC’D’ nên: \(\overrightarrow {HG}  = \frac{1}{3}\overrightarrow {HC'} \).

Vì ABCD.A’B’C’D’ là hình lập phương nên \(\overrightarrow {AC'}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} \) (quy tắc hình hộp)

Ta có: \(\overrightarrow {AG}  = \overrightarrow {AH}  + \overrightarrow {HG}  = \frac{1}{2}\overrightarrow {AC'}  + \frac{1}{3}\overrightarrow {HC'}  = \frac{1}{2}\overrightarrow {AC'}  + \frac{1}{6}\overrightarrow {AC'}  = \frac{2}{3}\overrightarrow {AC'}  = \frac{2}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right)\)

b) Theo phần a ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AC'} \) nên \(AG = \frac{2}{3}AC'\)

Tam giác ACD vuông tại D nên \(AC = \sqrt {A{D^2} + D{C^2}}  = a\sqrt 2 \)

Tam giác ACC’ vuông tại C nên \(AC' = \sqrt {A{C^2} + CC{'^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3 \)

Do đó, \(AG = \frac{2}{3}.a\sqrt 3  = \frac{{2a\sqrt 3 }}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"