Đề bài
Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)
b) \(y = \frac{{{x^2} + x - 1}}{x}\)
c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)
Phương pháp giải - Xem chi tiết
Quan sát đồ thị
Lời giải chi tiết
a) Đường thẳng x = 1 và x = 2 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)
Đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)
b) Đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)
Đường thẳng y = \(x + 1\) là tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)
c) Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)