Giải mục 3 trang 22, 23, 24 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:29:23

KP3

Trả lời câu hỏi Khám phá 3 trang 22 SGK Toán 12 Chân trời sáng tạo

Cho đồ thị của hàm số \(y = \frac{{{x^2} + 1}}{x}\) và đường thẳng y = x. Đường thẳng vuông góc với trục Ox tại điểm x cắt đồ thị hàm số tại điểm M và cắt đường thẳng y = x tại điểm N (Hình 7).

a) Tính \(\mathop {\lim }\limits_{x \to  - \infty } (\frac{{{x^2} + 1}}{x} - x)\) và \(\mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 1}}{x} - x)\)

b) Tính MN theo x và nhận xét về MN khi \(x \to  + \infty \) hoặc \(x \to  - \infty \)

Phương pháp giải:

Quan sát đồ thị

Lời giải chi tiết:

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } (\frac{{{x^2} + 1}}{x} - x) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 1 - {x^2}}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x} = 0\); \(\mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 1}}{x} - x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 1 - {x^2}}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x} = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x

b) MN = y – x = \(\frac{{{x^2} + 1}}{x} - x = \frac{1}{x}\)

Khi \(x \to  + \infty \) hoặc \(x \to  - \infty \) thì MN tiến dần về 0


TH3

Trả lời câu hỏi Thực hành 3 trang 24 SGK Toán 12 Chân trời sáng tạo

Tìm tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 3x}}{{x + 5}}\)

Phương pháp giải:

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0\)

Lời giải chi tiết:

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 5} \right\}\)

Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{2{x^2} - 3x}}{{x + 5}}}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^2} - 3x}}{{{x^2} + 5x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 - \frac{3}{x}}}{{1 + \frac{5}{x}}} = 2\)

\(b = \mathop {\lim }\limits_{x \to  + \infty } (y - ax) = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{2{x^2} - 3x}}{{x + 5}} - 2x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 13x}}{{x + 5}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 13}}{{1 + \frac{5}{x}}} =  - 13\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to  + \infty } [y - (2x - 3)] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^2} - 3x}}{{x + 5}} - (2x - 13) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{65}}{{x + 5}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{65}}{x}}}{{1 + \frac{5}{x}}} = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x - 13


TH4

Trả lời câu hỏi Thực hành 4 trang 24 SGK Toán 12 Chân trời sáng tạo

Nếu trong một ngày, một xưởng sản xuất được x kilôgam sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức: \(C(x) = \frac{{50x + 2000}}{x}\)

Tìm các đường tiệm cận của hàm số C(x).

Phương pháp giải:

- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: \(\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  - \infty \)

- Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = m\)

- Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0\)

Lời giải chi tiết:

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

\(\mathop {\lim }\limits_{x \to {0^ + }} C(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} C(x) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \)

Vậy tiệm cận đứng của đồ thị hàm số là đường thẳng x = 0

\(\mathop {\lim }\limits_{x \to  + \infty } C(x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\); \(\mathop {\lim }\limits_{x \to  - \infty } C(x) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\)

Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng y = 50

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"