Giải mục 4 trang 30,31,32 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:29:35

TH3

Trả lời câu hỏi Thực hành 3 trang 32 SGK Toán 12 Chân trời sáng tạo

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y = x - \frac{1}{x}\)

b) \(y =  - x + 2 - \frac{1}{{x + 1}}\)

c) \(y = \frac{{ - {x^2} - x + 2}}{{x + 1}}\)

Phương pháp giải:

Bước 1. Tìm tập xác định của hàm số

Bước 2. Xét sự biến thiên của hàm số

− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).

− Lập bảng biến thiên của hàm số.

Bước 3. Vẽ đồ thị của hàm số

− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ

− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

− Vẽ đồ thị hàm số.

Lời giải chi tiết:

a) \(y = x - \frac{1}{x}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)

  • Chiều biến thiên:

\(y' = 1 + \frac{1}{{{x^2}}} \ge 0\forall x \in D\) nên hàm số đồng biến trên D

  • Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (x - \frac{1}{x}) =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } (x - \frac{1}{x}) =  - \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } (1 - \frac{1}{{{x^2}}}) = 1;b = \mathop {\lim }\limits_{x \to  + \infty } (x - \frac{1}{x} - x) = 0\) nên y = x là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} (x - \frac{1}{x}) =  - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} (x - \frac{1}{x}) =  + \infty \) nên x = 0 là tiệm cận đứng của đồ thị hàm số

  • Bảng biến thiên:

Ta có: \(y = 0 \Leftrightarrow x - \frac{1}{x} = 0 \Leftrightarrow x = 1\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0)

b) \(y =  - x + 2 - \frac{1}{{x + 1}}\)

Tập xác định: \(D = \mathbb{R}\backslash \{  - 1\} \)

  • Chiều biến thiên:

\(y' =  - 1 + \frac{1}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 0\end{array} \right.\)

Trên các khoảng (\( - \infty \); -2), (0; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-2; -1) và (-1; 0) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

  • Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } ( - x + 2 - \frac{1}{{x + 1}}) =  - \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } ( - x + 2 - \frac{1}{{x + 1}}) =  + \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } ( - 1 + \frac{2}{x} - \frac{1}{{{x^2} + x}}) =  - 1;b = \mathop {\lim }\limits_{x \to  + \infty } ( - x + 2 - \frac{1}{{x + 1}} + x) = 2\) nên y = -x + 2 là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ + }} ( - x + 2 - \frac{1}{{x + 1}}) =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ - }} y = \mathop {\lim }\limits_{x \to  - {1^ - }} ( - x + 2 - \frac{1}{{x + 1}}) =  + \infty \) nên x = -1 là tiệm cận đứng của đồ thị hàm số

  • Bảng biến thiên:

Khi x = 0 thì y = 1 nên (0;1) là giao điểm của y với trục Oy

Ta có: \(y = 0 \Leftrightarrow  - x + 2 - \frac{1}{{x + 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 - \sqrt 5 }}{2}\\x = \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (\(\frac{{1 - \sqrt 5 }}{2}\); 0) và (\(\frac{{1 + \sqrt 5 }}{2}\);0)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"