Giải bài tập 13 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:29:43

Đề bài

Cho hàm số \(y = \frac{{{x^2} + 4x - 1}}{{x - 1}}\)

a) Khảo sát và vẽ đồ thị của hàm số.

b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [2; 4].

Phương pháp giải - Xem chi tiết

Bước 1. Tìm tập xác định của hàm số

Bước 2. Xét sự biến thiên của hàm số

− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).

− Lập bảng biến thiên của hàm số.

Bước 3. Vẽ đồ thị của hàm số

− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ

− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

− Vẽ đồ thị hàm số.

b) Lập bảng biến thiên và quan sát

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\backslash \{ 1\} \)

  • Chiều biến thiên:

\(y' = \frac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\)

Trên các khoảng (\( - \infty \); -1), (3; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-1; 3) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

  • Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 4x - 1}}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 4x - 1}}{{x - 1}} =  - \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 4x - 1}}{{{x^2} - x}} = 1;b = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{{x^2} + 4x - 1}}{{x - 1}} - x) = 5\) nên y = x + 5 là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 4x - 1}}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 4x - 1}}{{x - 1}} =  - \infty \) nên x = 1 là tiệm cận đứng của đồ thị hàm số

Bảng biến thiên:

Ta có: \(y = 0 \Leftrightarrow \frac{{{x^2} + 4x - 1}}{{x - 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2 - \sqrt 5 \\x =  - 2 + \sqrt 5 \end{array} \right.\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (\( - 2 - \sqrt 5 \); 0) và (\( - 2 + \sqrt 5 \); 0)

b)  Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[2;4]} y = y(3) = 10\) và \(\mathop {\max }\limits_{[2;4]} y = y(2) = 11\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"