Giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:29:48

Đề bài

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}\) là đường thẳng có phương trình

A. \(y = 2x + 3\)              B. \(y = x + 3\)                C. \(y = 2x + 1\)              D. \(y = x + 1\)

Phương pháp giải - Xem chi tiết

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0\)

Lời giải chi tiết

Chọn A

Tập xác định: \(D = \mathbb{R}\backslash \{  - 1;1\} \)

Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to  + \infty }  = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = 2\)

\(b = \mathop {\lim }\limits_{x \to  + \infty } (y - ax) = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - 2x) = 3\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to  + \infty } [\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - (2x + 3)] = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x + 3

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"