Giải bài tập 5 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:29:49

Đề bài

Giá trị nhỏ nhất của hàm số \(y = \sqrt {{x^2} + 2x + 3} \) trên đoạn [–2; 3] là

A. \(\sqrt 3 \)                   B. \(\sqrt {30} \)              C. \(\sqrt 2 \)                   D. 0

Phương pháp giải - Xem chi tiết

Cho hàm số y = f(x) xác định trên tập hợp D.

- Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu f(x) \( \le \) M với mọi x thuộc D và tồn tại \({x_0}\) thuộc D sao cho f(\({x_0}\)) = M. Kí hiệu M = \(\mathop {\max }\limits_D \)f(x).

- Số m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu f(x) \( \ge \) m với mọi x thuộc D và tồn tại \({x_0}\) thuộc D sao cho f(\({x_0}\)) = m. Kí hiệu m = \(\mathop {\min }\limits_D \)f(x).

Lời giải chi tiết

Chọn C

Tập xác định: \(D = \mathbb{R}\)

\(y' = \frac{{x + 1}}{{\sqrt {{x^2} + 2x + 3} }} = 0 \Leftrightarrow x =  - 1\)

Bảng biến thiên:

Từ bảng biến thiên ta thấy, \(\mathop {\min }\limits_D y = y( - 1) = \sqrt 2 \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"