Đề bài
Cho hình hộp ABCD.A′B′C′D′. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {B'C'} + \overrightarrow {DD'} = \overrightarrow {AC'} \)
b) \(\overrightarrow {DB'} + \overrightarrow {D'D} + \overrightarrow {BD'} = \overrightarrow {BB'} \)
c) \(\overrightarrow {AC} + \overrightarrow {BA'} + \overrightarrow {DB} + \overrightarrow {C'D} = \overrightarrow 0 \)
Phương pháp giải - Xem chi tiết
Áp dụng tính chất 2 vecto bằng nhau, quy tắc hình bình hành và quy tắc 3 điểm
Lời giải chi tiết
a) \(\overrightarrow {AB} + \overrightarrow {B'C'} + \overrightarrow {DD'} = \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {AA'} = \overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow {AC'} \)
b) \(\overrightarrow {DB'} + \overrightarrow {D'D} + \overrightarrow {BD'} = \overrightarrow {D'B'} + \overrightarrow {BD'} = \overrightarrow {BB'} \)
c) \(\overrightarrow {AC} + \overrightarrow {BA'} + \overrightarrow {DB} + \overrightarrow {C'D} = \overrightarrow {A'C'} + \overrightarrow {DA'} + \overrightarrow {C'D} = \overrightarrow {A'D} + \overrightarrow {DA'} = \overrightarrow 0 \)