Giải mục 2 trang 43,44,45 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:30:08

KP2

Trả lời câu hỏi Khám phá 2 trang 43 SGK Toán 12 Chân trời sáng tạo

Cho hình hộp ABCD.A′B′C′D′ (Hình 5).

a) Trong mặt phẳng (ABCD), tìm vectơ tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \)

b) So sánh hai vectơ \(\overrightarrow {BD'} ,\overrightarrow {B'D'} \)

c) Giải thích tại sao \(\overrightarrow {AB}  + \overrightarrow {B'D'}  = \overrightarrow {AD} \).

Phương pháp giải:

Áp dụng quy tắc hình bình hành và quy tắc ba điểm

Lời giải chi tiết:

a) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

b) \(\overrightarrow {BD'}  = \overrightarrow {B'D'} \)

c) \(\overrightarrow {AB}  + \overrightarrow {B'D'}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)


KP3

Trả lời câu hỏi Khám phá 3 trang 44 SGK Toán 12 Chân trời sáng tạo

Cho hình hộp ABCD.A′B′C′D′.

a) Tìm các vectơ tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \), \(\overrightarrow {AC}  + \overrightarrow {AA'} \)

b) Dùng kết quả của câu a và tính chất kết hợp của phép cộng vectơ để chứng minh \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC} \)

Phương pháp giải:

Áp dụng quy tắc hình bình hành và tính chất kết hợp của phép cộng

Lời giải chi tiết:

a) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \);\(\overrightarrow {AC}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)

b) \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)


TH3

Trả lời câu hỏi Thực hành 3 trang 46 SGK Toán 12 Chân trời sáng tạo

Cho hình hộp ABCD.EFGH. Thực hiện các phép toán sau đây:

Phương pháp giải:

Áp dụng quy tắc hình bình hành, hình hộp và 2 vecto bằng nhau

Lời giải chi tiết:

a) \(\overrightarrow {DA}  + \overrightarrow {DC}  + \overrightarrow {DH}  = \overrightarrow {DB}  + \overrightarrow {DH}  = \overrightarrow {DF} \)

b) \(\overrightarrow {HE}  + \overrightarrow {GC}  + \overrightarrow {AB}  = \overrightarrow {HE}  + \overrightarrow {HD}  + \overrightarrow {HG}  = \overrightarrow {HB} \)


TH4

Trả lời câu hỏi Thực hành 4 trang 46 SGK Toán 12 Chân trời sáng tạo

Cho hình chóp S.ABCD có đáy là hình bình hành. Tìm các vectơ hiệu \(\overrightarrow {AS}  - \overrightarrow {DC} ,\overrightarrow {CS}  - \overrightarrow {DA} \)

Phương pháp giải:

Áp dụng quy tắc hiệu và 2 vecto bằng nhau

Lời giải chi tiết:

\(\overrightarrow {AS}  - \overrightarrow {DC}  = \overrightarrow {AS}  - \overrightarrow {AB}  = \overrightarrow {AS}  + \overrightarrow {BA}  = \overrightarrow {BS} \)

\(\overrightarrow {CS}  - \overrightarrow {DA}  = \overrightarrow {CS}  - \overrightarrow {CB}  = \overrightarrow {CS}  + \overrightarrow {BC}  = \overrightarrow {BS} \)


TH5

Trả lời câu hỏi Thực hành 5 trang 46 SGK Toán 12 Chân trời sáng tạo

Cho tứ diện ABCD có M và N lần lượt là trung điểm của AB và CD. Hãy thực hiện các phép toán sau đây:

a) \(\overrightarrow {BM}  + \overrightarrow {AC}  + \overrightarrow {ND} \)

b) \(\overrightarrow {AD}  - \overrightarrow {AM}  + \overrightarrow {NC} \)

Phương pháp giải:

Áp dụng quy tắc ba điểm, quy tắc hiệu và tính chất trung điểm

Lời giải chi tiết:

a) \(\overrightarrow {BM}  + \overrightarrow {AC}  + \overrightarrow {ND}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {MC}  + \overrightarrow {CN}  = \overrightarrow {MN} \)

b) \(\overrightarrow {AD}  - \overrightarrow {AM}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {MA}  + \overrightarrow {DN}  = \overrightarrow {MD}  + \overrightarrow {DN}  = \overrightarrow {MN} \)


TH6

Trả lời câu hỏi Thực hành 6 trang 46 SGK Toán 12 Chân trời sáng tạo

Cho hình lập phương ABCD. A′B′C′D′ có cạnh bằng đơn vị. Tìm độ dài các vectơ sau đây:

a) \(\overrightarrow a  = \overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'} \)

b) \(\overrightarrow b  = \overrightarrow {BC}  - \overrightarrow {BA}  + \overrightarrow {C'A} \)

Phương pháp giải:

Áp dụng quy tắc hình hộp và định lí Pytago

Lời giải chi tiết:

a) \(\overrightarrow a  = \overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'}  = \overrightarrow {BD'} \)

\(|\overrightarrow a | = |\overrightarrow {BD'} | = \sqrt {B{D^2} + D{D^2}}  = \sqrt {B{A^2} + B{C^2} + D{D^2}}  = \sqrt {1 + 1 + 1}  = \sqrt 3 \)

b) \(\overrightarrow b  = \overrightarrow {BC}  - \overrightarrow {BA}  + \overrightarrow {C'A}  = \overrightarrow {BC}  + \overrightarrow {AB}  + \overrightarrow {C'A}  = \overrightarrow {CC'} \)

\(|\overrightarrow b | = |\overrightarrow {CC'} | = 1\)


VD2

Trả lời câu hỏi Vận dụng 2 trang 46 SGK Toán 12 Chân trời sáng tạo

Ba lực \(\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} ;\overrightarrow {{F_3}} \) cùng tác động vào một vật có phương đôi một vuông góc và có độ lớn lần lượt là 2N; 3N; 4N (Hình 16). Tính độ lớn hợp lực của ba lực đã cho.

Phương pháp giải:

Áp dụng quy tắc hình bình hành và định lí Pytago

Lời giải chi tiết:

Ta có: \(|\overrightarrow {{F_2}}  + \overrightarrow {{F_3}} | = \sqrt {{F_2}^2 + {F_3}^2}  = \sqrt {{3^2} + {4^2}}  = 5\)

Độ lớn hợp lực của ba lực là: \(|\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} | = \sqrt {{F_1}^2 + {5^2}}  = \sqrt {{2^2} + {5^2}}  = \sqrt {29} N\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"