Giải mục 2 trang 59,60 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:30:22

KP2

Trả lời câu hỏi Khám phá 2 trang 59 SGK Toán 12 Chân trời sáng tạo

Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\).

a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)

b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)

c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).

Phương pháp giải:

Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b  = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)

Lời giải chi tiết:

a) \(\overrightarrow a  = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i  + {a_2}\overrightarrow j  + {a_3}\overrightarrow k \)

\(\overrightarrow b  = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i  + {b_2}\overrightarrow j  + {b_3}\overrightarrow k \)

b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i  = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ  = 1\)

\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j  = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ  = 1\)

\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k  = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ  = 1\)

\(\overrightarrow i .\overrightarrow j  = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ  = 0\)

\(\overrightarrow j .\overrightarrow k  = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ  = 0\)

\(\overrightarrow i .\overrightarrow k  = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ  = 0\)

c) \(\overrightarrow a .\overrightarrow b  = ({a_1}\overrightarrow i  + {a_2}\overrightarrow j  + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i  + {b_2}\overrightarrow j  + {b_3}\overrightarrow k )\)

\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j  + {a_1}{b_3}\overrightarrow i .\overrightarrow k  + {a_2}{b_1}\overrightarrow i .\overrightarrow j  + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k  + {a_3}{b_1}\overrightarrow i .\overrightarrow k  + {a_3}{b_2}\overrightarrow j .\overrightarrow k  + {a_3}{b_3}{\overrightarrow k ^2}\)

\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)


TH2

Trả lời câu hỏi Thực hành 2 trang 60 SGK Toán 12 Chân trời sáng tạo

Cho ba vectơ \(\overrightarrow m  = ( - 5;4;9)\), \(\overrightarrow n  = (2; - 7;0)\), \(\overrightarrow p  = (6;3; - 4)\).

a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)

b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)

c) Cho \(\overrightarrow q  = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?

Phương pháp giải:

a) Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b  = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)

b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)

c) \(\overrightarrow a  \bot \overrightarrow b  \Rightarrow \overrightarrow a .\overrightarrow b  = 0\)

Lời giải chi tiết:

a) \(\overrightarrow m .\overrightarrow n  =  - 5.2 + 4.( - 7) =  - 38\)

\(\overrightarrow m .\overrightarrow p  = ( - 5).6 + 4.3 + 9.( - 4) =  - 54\)

b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}}  = \sqrt {122} \)

\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}}  = \sqrt {53} \)

\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} =  - \frac{{19\sqrt {6466} }}{{3233}}\)

c) \(\overrightarrow q .\overrightarrow p  = 1.6 - 2.2 = 2\) nên \(\overrightarrow q \) không vuông góc với \(\overrightarrow p \)


VD2

Trả lời câu hỏi Vận dụng 2 trang 60 SGK Toán 12 Chân trời sáng tạo

Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f  = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a  = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)

Phương pháp giải:

Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)

Lời giải chi tiết:

Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a  = 5.70 + 4.20 - 2.( - 40) = 510J\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"