Giải bài tập 14 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo

2024-09-14 19:30:24

Đề bài

Cho hai điểm A(1; 2; –1), B(0; –2; 3).

a) Tính độ dài đường cao AH hạ từ đỉnh A của tam giác OAB với O là gốc toạ độ.

b) Tính diện tích tam giác OAB.

Phương pháp giải - Xem chi tiết

a) \(\overrightarrow a  \bot \overrightarrow b  \Rightarrow \overrightarrow a .\overrightarrow b  = 0\). Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)

b) \({S_{OAB}} = \frac{1}{2}AH.OB = \frac{1}{2}|\overrightarrow {AH} |.|\overrightarrow {OB} |\)

Lời giải chi tiết

a) Ta có: \(\overrightarrow {OB}  = (0; - 2;3)\)

Gọi H(x;y;z) là chân đường cao kẻ từ A của tam giác OAB

=> \(\overrightarrow {OH}  = (x;y;z)\)

\(\overrightarrow {OH} \) cùng phương với \(\overrightarrow {OB} \) nên \(x = 0;y =  - 2t;z = 3t\) => \(H(0; - 2t;3t)\)

Ta có: \(\overrightarrow {AH}  = ( - 1; - 2t - 2;3t + 1)\)

\(\overrightarrow {AH}  \bot \overrightarrow {OB}  \Leftrightarrow \overrightarrow {AH} .\overrightarrow {OB}  = 0 \Leftrightarrow  - 1.0 - 2.( - 2t - 2) + 3.(3t + 1) = 0 \Leftrightarrow t =  - \frac{7}{{13}}\)

Vậy \(H(0;\frac{{14}}{{13}};\frac{{ - 21}}{{13}})\)

b) \(\overrightarrow {AH}  = ( - 1; - \frac{{12}}{{13}}; - \frac{8}{{13}}) \Rightarrow AH = \sqrt {{{( - 1)}^2} + {{( - \frac{{12}}{{13}})}^2} + {{( - \frac{8}{{13}})}^2}}  = \frac{{\sqrt {377} }}{{13}}\)

\(\overrightarrow {OB}  = (0; - 2;3) \Rightarrow OB = \sqrt {{{( - 2)}^2} + {3^2}}  = \sqrt {13} \)

Diện tích tam giác OAB: \({S_{OAB}} = \frac{1}{2}AH.OB = \frac{1}{2}.\frac{{\sqrt {377} }}{{13}}.\sqrt {13}  = \frac{{\sqrt {29} }}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"