Đề bài
Tìm
a) \(\int {\left( {2{x^5} + 3} \right)dx} \)
b) \(\int {\left( {5\cos x - 3\sin x} \right)dx} \)
c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx} \)
d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx} \)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất nguyên hàm của tổng, hiệu hai hàm số, nguyên hàm của tích một số với một hàm số để đưa về tính nguyên hàm của các hàm số sơ cấp.
Lời giải chi tiết
a) \(\int {\left( {2{x^5} + 3} \right)dx} = 2\int {{x^5}dx} + 3\int {dx} = 2\frac{{{x^6}}}{6} + 3x + C = \frac{{{x^6}}}{3} + 3x + C\)
b) \(\int {\left( {5\cos x - 3\sin x} \right)dx} = 5\int {\cos xdx} - 3\int {\sin xdx} = 5\sin x - 3\left( { - \cos x} \right) + C\)
\( = 5\sin x + 3\cos x + C\)
c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx} = \frac{1}{2}\int {{x^{\frac{1}{2}}}dx} - 2\int {\frac{1}{x}dx} = \frac{1}{2}.\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} - 2\ln \left| x \right| + C = \frac{1}{3}\sqrt {{x^3}} - 2\ln \left| x \right| + C\)
d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx} = {e^{ - 2}}\int {{e^x}dx} - 2\int {\frac{1}{{{{\sin }^2}x}}dx = {e^{ - 2}}.{e^x} - 2\left( { - \cot x} \right) + C} \) \( = {e^{x - 2}} + 2\cot x + C\)