Giải bài tập 1 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

2024-09-14 19:31:09

Đề bài

Tính diện tích hình thang cong giới hạn bởi:

a) Đồ thị hàm số \(y = {x^2}\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\).

 

b) Đồ thị hàm số \(y = \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 3\).

 

Phương pháp giải - Xem chi tiết

Diện tích hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {f\left( x \right)dx} \).

Lời giải chi tiết

a) Diện tích hình thang cong giới hạn bởi đồ thị hàm số \(y = {x^2}\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\) là \(S = \int\limits_0^2 {{x^2}dx}  = \left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^2 = \frac{{{2^3}}}{3} - \frac{{{0^3}}}{3} = \frac{8}{3}\)

b) Diện tích hình thang cong giới hạn bởi đồ thị hàm số \(y = \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 3\) là \(S = \int\limits_1^3 {\frac{1}{x}dx}  = \left. {\left( {\ln x} \right)} \right|_1^3 = \ln 3 - \ln 1 = \ln 3\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"