Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

2024-09-14 19:31:12

Đề bài

Trong mặt phẳng toạ độ \(Oxy\), cho hình thang \(OABC\) có \(A\left( {0;1} \right)\), \(B\left( {2;2} \right)\) và \(C\left( {2;0} \right)\) (hình 19). Tính thể tích khối tròn xoay tạo thành khi quay hình thang \(OABC\) quanh trục \(Ox\).

 

Phương pháp giải - Xem chi tiết

Hình thang \(OABC\) được giới hạn bởi các đường thẳng \(AB\), \(OC\) (trục hoành), \(OA\) (trục tung, \(x = 0\)) và \(BC\) \(\left( {x = 2} \right)\). Phương trình đường thẳng \(AB\) là \(y = f\left( x \right) = ax + b\).

Thể tích khối tròn xoay khi quay hình thang \(OABC\) quanh trục \(Ox\) là \(V = \pi \int\limits_0^2 {{f^2}\left( x \right)dx} \)

Lời giải chi tiết

Hình thang \(OABC\) được giới hạn bởi các đường thẳng \(AB\), \(OC\) (trục hoành), \(OA\) (trục tung, \(x = 0\)) và \(BC\) \(\left( {x = 2} \right)\).

Phương trình đường thẳng \(AB\) là \(y = f\left( x \right) = ax + b\). Do \(A\left( {0;1} \right)\), \(B\left( {2;2} \right)\) nên ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{a.0 + b = 1}\\{a.2 + b = 2}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = 1\end{array} \right.\)

Vậy phương trình đường thẳng \(AB\) là \(y = \frac{1}{2}x + 1\)

Thể tích khối tròn xoay khi quay hình thang \(OABC\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^2 {{{\left( {\frac{1}{2}x + 1} \right)}^2}dx}  = \pi \int\limits_0^2 {\left( {\frac{1}{4}{x^2} + x + 1} \right)dx}  = \pi \left. {\left( {\frac{{{x^3}}}{{12}} + \frac{{{x^2}}}{2} + x} \right)} \right|_0^2 = \frac{{14}}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"