Giải bài tập 1 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

2024-09-14 19:31:14

Đề bài

Tính diện tích hình phẳng giới hạn bởi

a) Đồ thị của hàm số \(y = {e^x}\), trục hoành và hai đường thẳng \(x =  - 1\), \(x = 1\).

b) Đồ thị của hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 2\).

Phương pháp giải - Xem chi tiết

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)

Lời giải chi tiết

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục hoành và hai đường thẳng \(x =  - 1\), \(x = 1\) là

\(S = \int\limits_{ - 1}^1 {\left| {{e^x}} \right|dx}  = \int\limits_{ - 1}^1 {{e^x}dx}  = \left. {\left( {{e^x}} \right)} \right|_{ - 1}^1 = e - \frac{1}{e}\)

b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1\), \(x = 2\) là

\(S = \int\limits_1^2 {\left| {x + \frac{1}{x}} \right|dx}  = \int\limits_1^2 {\left( {x + \frac{1}{x}} \right)dx}  = \left. {\left( {\frac{{{x^2}}}{2} + \ln \left| x \right|} \right)} \right|_1^2 = \frac{3}{2} + \ln 2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"