Giải mục 2 trang 22, 23, 24 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:31:52

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 22 SGK Toán 12 Cánh diều

Cho hàm số \(y = f\left( x \right) = \frac{1}{x}\) có đồ thị là đường cong như Hình 12. Tìm \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\)

Phương pháp giải:

Quan sát đồ thị

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) =  - \infty \).


LT2

Trả lời câu hỏi Luyện tập 2 trang 23 SGK Toán 12 Cánh diều

Tìm tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 3x}}{{x - 5}}\).

Phương pháp giải:

Đường thẳng \(x = {x_o}\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  + \infty \) ,\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  - \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  + \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  - \infty \).

Lời giải chi tiết:

Tập xác định \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{{x^2} + 3x}}{{x - 5}} =  - \infty \\\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{{x^2} + 3x}}{{x - 5}} =  + \infty \end{array} \right.\)

Vậy đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số đã cho

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"