Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:32:17

Đề bài

Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau:

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\);

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\);

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\);

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

Phương pháp giải - Xem chi tiết

Xét phương trình với số trong ngoặc

So sánh và đưa ra kết quả

Lời giải chi tiết

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\)

Tìm điểm cực trị: \(f'\left( x \right) = 0 \to 6{x^2} - 6 = 0 \to x =  - 1,1\)

So sánh giá trị hàm số tại các điểm cực trị và hai đầu mút của đoạn:

\(f\left( { - 1} \right) = 2{( - 1)^3} - 6\left( { - 1} \right) =  - 2 + 6 = 4\)

\(f\left( 1 \right) = 2{(1)^3} - 6\left( 1 \right) = 2 - 6 =  - 4\)

\(f\left( 3 \right) = 2{(3)^3} - 6\left( 3 \right) = 54 - 18 = 36\)

Vậy GTNN của hàm số trên đoạn \(\left[ { - 1;3} \right]\) là \( - 4\) (tại \(x = 1\)), và GTLN là 36 (tại \(x = 3\))

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 1 \right) = \frac{{{1^2} + 3.1 + 6}}{{1 + 2}} = \frac{{10}}{3};f\left( 5 \right) = \frac{{{5^2} + 3.5 + 6}}{{5 + 2}} = \frac{{46}}{7}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {1;5} \right]\) là \(\frac{{10}}{3}\) (tại \(x = 1\)), và GTLN là \(\frac{{46}}{7}\) (tại \(x = 5\))

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 0 \right) = \frac{{\ln \left( {0 + 1} \right)}}{{0 + 1}} = 0;f\left( 3 \right) = \frac{{\ln \left( {3 + 1} \right)}}{{3 + 1}} = \frac{{\ln \left( 2 \right)}}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {0;3} \right]\) là 0 (tại \(x = 0\)), và GTLN là \(\frac{{\ln \left( 2 \right)}}{2}\) (tại \(x = 3\))

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( { - \frac{\pi }{2}} \right) = 2\sin \left( {3\left( { - \frac{\pi }{2}} \right)} \right) + 7\left( { - \frac{\pi }{2}} \right) + 1 = 3 - \frac{{7\pi }}{2}\)

\(f\left( {\frac{\pi }{2}} \right) = 2\sin \left( {3\left( {\frac{\pi }{2}} \right)} \right) + 7\left( {\frac{\pi }{2}} \right) + 1 =  - 1 + \frac{{7\pi }}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\) là \(3 - \frac{{7\pi }}{2}\) (tại \(x = \frac{{ - \pi }}{2}\)), và GTLN là \( - 1 + \frac{{7\pi }}{2}\) (tại \(x = \frac{\pi }{2}\))

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"