Giải bài tập 6 trang 46 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:32:18

Đề bài

Tìm các đường TCN và TCĐ của mỗi hàm số sau:

A. \(y = \frac{{5x + 1}}{{3x - 2}}\)            

B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)                          

C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)

Phương pháp giải - Xem chi tiết

Tìm TXD

Phân tích hàm số

Tìm TCD, TCN

Lời giải chi tiết

A. \(y = \frac{{5x + 1}}{{3x - 2}}\)

Tập xác định: \(\mathbb{R}\backslash \left\{ {\frac{2}{3}} \right\}\)

Đặt mẫu: \(3x - 2 = 0\) → \(x = \frac{2}{3}\)

Vậy hàm số có TCĐ là: \(x = \frac{2}{3}\)

Ta có:

\(\mathop {{\rm{lim}}}\limits_{x \to  \pm \infty } \frac{{5x + 1}}{{3x - 2}} = \frac{5}{3}\)

Vậy, hàm số có TCN là: \(y = \frac{5}{3}\)

B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)

TXĐ: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)

Đặt mẫu \({x^3} + 1 = 0\) → \(x =  - 1\)

Vậy hàm số có TCĐ là: \(x =  - 1\)

Ta có:

\(\mathop {{\rm{lim}}}\limits_{x \to  \pm \infty } \frac{{2{x^3} - 3x}}{{{x^3} + 1}} = 2\)

Vậy hàm số có TCN là: \(y = 2\)

C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)

TXĐ: \(x \in \left[ { - \infty , - 2} \right] \cup \left[ {2, + \infty } \right]\)

Đặt mẫu \(\sqrt {{x^2} - 4}  = 0\) → \(x =  - 2;\;x = 2\)

Vậy hàm số có TCĐ là: \(x =  - 2;\;x = 2\)

Ta có

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{x}{{\sqrt {{x^2} - 4} }} = 1\)

\(\mathop {{\rm{lim}}}\limits_{x \to  - \infty } \frac{x}{{\sqrt {{x^2} - 4} }} =  - 1\)

Vậy hàm số có TCN là: \(y = 1;\;y =  - 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"