Đề bài
Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3).
a) Chứng minh rằng ba điểm A, B, C không thẳng hàng
b) Tính chu vi tam giác ABC
c) Tìm tọa độ trọng tâm G của tam giác ABC
d) Tính \(\cos \widehat {BAC}\)
Phương pháp giải - Xem chi tiết
a) A, B, C không thẳng hàng khi \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương
b) Chu vi tam giác ABC bằng tổng độ dài ba cạnh
c) Cho tam giác ABC có \(A({a_1};{a_2};{a_3})\), \(B({b_1};{b_2};{b_3})\), \(C({c_1};{c_2};{c_3})\), ta có \(G(\frac{{{a_1} + {b_1} + {c_1}}}{3};\frac{{{a_2} + {b_2} + {c_2}}}{3};\frac{{{a_3} + {b_3} + {c_3}}}{3})\) là trọng tâm của tam giác ABC
d) \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = (6; - 3;5),\overrightarrow {AC} = (2; - 1; - 3)\)
\(\overrightarrow {AB} \ne k\overrightarrow {AC} \) nên \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương hay A, B, C không thẳng hàng
b) Ta có: \(AB = \sqrt {{6^2} + {{( - 3)}^2} + {5^2}} = \sqrt {70} \)
\(AC = \sqrt {{2^2} + {{( - 1)}^2} + {{( - 3)}^2}} = \sqrt {14} \)
\(\overrightarrow {BC} = ( - 4;2; - 8) \Rightarrow BC = \sqrt {{{( - 4)}^2} + {2^2} + {{( - 8)}^2}} = 2\sqrt {21} \)
Chu vi tam giác ABC là: AB + AC + BC = \(\sqrt {70} \)+ \(\sqrt {14} \)+ \(2\sqrt {21} \)
c) Tọa độ trọng tâm G của tam giác ABC là: \(G(\frac{{ - 2 + 4 + 0}}{3};\frac{{3 + 0 + 2}}{3};\frac{{0 + 5 - 3}}{3}) \Rightarrow G(\frac{2}{3};\frac{5}{3};\frac{2}{3})\)
d) \(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{6.2 - 3.( - 1) + 5.( - 3)}}{{\sqrt {70} .2\sqrt {21} }} = 0\)