Giải mục 4 trang 79,80 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:32:36

Đề bài

Trả lời câu hỏi Hoạt động 4 trang 79 SGK Toán 12 Cánh diều

a) Cho hình lập phương ABCD.A’B’C’D’ có A(0;0;0), B(1;0;0), D(0;1;0), C’(1;1;1). Hãy chỉ ra tọa độ của một vecto vuông góc với cả hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \)

b) Cho hai vecto \(\overrightarrow u  = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v  = ({x_2};{y_2};{z_2})\) không cùng phương. Xét vecto \(\overrightarrow w  = ({y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1})\).

  • Tính \(\overrightarrow w .\overrightarrow u \), \(\overrightarrow w .\overrightarrow v \)
  • Vecto \(\overrightarrow w \) có vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \) hay không?

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b  = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\) và \(\overrightarrow a  \bot \overrightarrow b  \Leftrightarrow \overrightarrow a .\overrightarrow b  = 0\)

Lời giải chi tiết

a)

Ta có: \(\overrightarrow {AB}  = (1;0;0)\), \(\overrightarrow {AD}  = (0;1;0)\)

\(A'(0;0;1) \Rightarrow \overrightarrow {AA'}  = (0;0;1)\)

Ta có: \(\overrightarrow {AA'} .\overrightarrow {AB}  = 0.1 + 0.0 + 1.0 = 0 \Leftrightarrow \overrightarrow {AA'}  \bot \overrightarrow {AB} \)

\(\overrightarrow {AA'} .\overrightarrow {AD}  = 0.0 + 0.1 + 1.0 = 0 \Leftrightarrow \overrightarrow {AA'}  \bot \overrightarrow {AD} \)

Vậy \(\overrightarrow {AA'} \) vuông góc với cả hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \)

b) \(\overrightarrow w .\overrightarrow u  = ({y_1}{z_2} - {y_2}{z_1}){x_1} + ({z_1}{x_2} - {z_2}{x_1}){y_1} + ({x_1}{y_2} - {x_2}{y_1}){z_1} = {x_1}{y_1}{z_2} - {x_1}{y_2}{z_1} + {y_1}{z_1}{x_2} - {y_1}{z_2}{x_1} + {z_1}{x_1}{y_2} - {z_1}{x_2}{y_1} = 0\)

\(\overrightarrow w .\overrightarrow v  = ({y_1}{z_2} - {y_2}{z_1}){x_2} + ({z_1}{x_2} - {z_2}{x_1}){y_2} + ({x_1}{y_2} - {x_2}{y_1}){z_2} = {x_2}{y_1}{z_2} - {x_2}{y_2}{z_1} + {y_2}{z_1}{x_2} - {y_2}{z_2}{x_1} + {z_2}{x_1}{y_2} - {z_2}{x_2}{y_1} = 0\)

Vecto \(\overrightarrow w \) có vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"