Giải mục 3 trang 76,77,78 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:32:36

Đề bài

Trả lời câu hỏi Hoạt động 3 trang 76 SGK Toán 12 Cánh diều

Trong không gian với hệ tọa độ Oxyz, cho các vecto \(\overrightarrow u  = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v  = ({x_2};{y_2};{z_2})\). Hãy biểu diễn các vecto \(\overrightarrow u ,\overrightarrow v \) theo ba vecto đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) và tính tích vô hướng \(\overrightarrow u .\overrightarrow v \)

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b  = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)

Lời giải chi tiết

\(\overrightarrow u  = ({x_1};{y_1};{z_1}) = {x_1}\overrightarrow i  + {y_1}\overrightarrow j  + {z_1}\overrightarrow k \)

\(\overrightarrow v  = ({x_2};{y_2};{z_2}) = {x_2}\overrightarrow i  + {y_2}\overrightarrow j  + {z_2}\overrightarrow k \)

Ta có: \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i  = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ  = 1\)

\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j  = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ  = 1\)

\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k  = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ  = 1\)

\(\overrightarrow i .\overrightarrow j  = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ  = 0\)

\(\overrightarrow j .\overrightarrow k  = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ  = 0\)

\(\overrightarrow i .\overrightarrow k  = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ  = 0\)

Vậy: \(\overrightarrow u .\overrightarrow v  = ({x_1}\overrightarrow i  + {y_1}\overrightarrow j  + {z_1}\overrightarrow k ).({x_2}\overrightarrow i  + {y_2}\overrightarrow j  + {z_2}\overrightarrow k )\)

\( = {x_1}{x_2}{\overrightarrow i ^2} + {x_1}{y_2}\overrightarrow i .\overrightarrow j  + {x_1}{z_2}\overrightarrow i .\overrightarrow k  + {y_1}{x_2}\overrightarrow i .\overrightarrow j  + {y_1}{y_2}{\overrightarrow j ^2} + {y_1}{z_2}\overrightarrow j .\overrightarrow k  + {z_1}{x_2}\overrightarrow i .\overrightarrow k  + {z_1}{y_2}\overrightarrow j .\overrightarrow k  + {z_1}{z_2}{\overrightarrow k ^2}\)

\( = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"