Giải bài tập 14 trang 83 SGK Toán 12 tập 1 - Cánh diều

2024-09-14 19:32:38

Đề bài

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0).

a) Chứng minh rằng ba điểm A, B, C không thằng hàng

b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tính chu vi của tam giác ABC

e) Tính \(\cos \overrightarrow {BAC} \)

Phương pháp giải - Xem chi tiết

a) A, B, C không thẳng hàng khi \(\overrightarrow {AB}  \ne k\overrightarrow {AC} \)

b) Tứ giác ABCD là hình bình hành khi có một cặp cạnh đối song song và bằng nhau

c) Cho tam giác ABC có \(A({a_1};{a_2};{a_3})\), \(B({b_1};{b_2};{b_3})\), \(C({c_1};{c_2};{c_3})\), ta có \(G(\frac{{{a_1} + {b_1} + {c_1}}}{3};\frac{{{a_2} + {b_2} + {c_2}}}{3};\frac{{{a_3} + {b_3} + {c_3}}}{3})\) là trọng tâm của tam giác ABC

d) Chu vi tam giác bằng tổng độ dài 3 cạnh

e) \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\)

Lời giải chi tiết

a) \(\overrightarrow {AB}  = ( - 2; - 4;8)\); \(\overrightarrow {AC}  = ( - 3;2;3)\)

Ta có: \(\overrightarrow {AB}  \ne k\overrightarrow {AC} \) => A, B, C không thẳng hàng

b) Để ABCD là hình bình hành thì \(\overrightarrow {AB}  = \overrightarrow {DC} \)

Gọi D(a;b;c) => \(\overrightarrow {DC}  = ( - 1 - a;2 - b; - c)\)

\(\overrightarrow {AB}  = \overrightarrow {DC}  \Leftrightarrow ( - 3;2;3) = ( - 1 - a;2 - b; - c) \Leftrightarrow a = 2;b = 0;c =  - 3 \Rightarrow D(2;0; - 3)\)

c) \(G(\frac{1}{3};\frac{{ - 2}}{3};\frac{2}{3})\)

d) \(\overrightarrow {BC}  = ( - 1;6; - 5) \Rightarrow BC = \sqrt {62} \)

\(\overrightarrow {AB}  = ( - 2; - 4;8) \Rightarrow AB = 2\sqrt {21} \)

\(\overrightarrow {AC}  = ( - 3;2;3) \Rightarrow AC = \sqrt {22} \)

Chu vi của tam giác ABC là: AB + AC + BC = \(2\sqrt {21} \)+\(\sqrt {22} \)+\(\sqrt {62} \)

e) \(\cos \overrightarrow {BAC}  = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - 2.( - 3) - 4.2 + 8.3}}{{\sqrt {{{( - 2)}^2} + {{( - 4)}^2} + {8^2}} .\sqrt {{{( - 3)}^2} + {2^2} + {3^2}} }} = \frac{{\sqrt {462} }}{{42}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"