Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

2024-09-14 19:32:52

Đề bài

Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức \(h'(t) = 1,5t + 5\), trong đó h(t) (cm) là chiều cao của cây khi kết thúc t (năm). Cây con khi được trồng cao 12cm

a) Tìm công thức chỉ chiều cao của cây sau t năm

b) Khi được bán, cây cao bao nhiêu cm?

Phương pháp giải - Xem chi tiết

Áp dụng công thức tìm nguyên hàm của một hàm số

Lời giải chi tiết

a) \(\int {h'(t)} dt = \int {\left( {1,5t + 5} \right)} dt = 0,75{t^2} + 5t + C\)

Vậy công thức chỉ chiều cao của cây sau t năm là: \(0,75{t^2} + 5t + C\)

b) Đặt \(H(t) = 0,75{t^2} + 5t + C\)

Tại t = 0 thì H(0) = 12 suy ra C = 12

Khi được bán, tức là sau 6 năm thì cây cao: \(H(6) = 0,{75.6^2} + 5.6 + 12 = 69cm\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"