Đề bài
Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \((0 \le t \le 10)\). Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \(P'(t) = k\sqrt t \), trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị).
Phương pháp giải - Xem chi tiết
Tìm hàm số biểu diễn số lượng vi khuẩn thông qua hàm số tốc độ tăng trưởng của quần thể
Lời giải chi tiết
\(\int {P'(t)} dt = \int {k\sqrt t dt} = \frac{2}{3}k\sqrt {{t^3}} + C = P(t)\)
\(P(0) = \frac{2}{3}k\sqrt {{0^3}} + C = 500 \Rightarrow C = 500\)
\(P(1) = \frac{2}{3}k\sqrt {{1^3}} + 500 = 600 \Rightarrow k = 150\)
Vậy số lượng vi khuẩn của quần thể đó được biểu diễn bởi hàm số \(P(t) = 100\sqrt {{t^3}} + 500\)
Số lượng vi khuẩn của quần thể đó sau 7 ngày là: \(P(7) = 100\sqrt {{7^3}} + 500 = 2352\) (con)