Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

2024-09-14 19:33:22

Đề bài

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Giả sử \(\widehat {POM} = \alpha ,OM = l(0 \le \alpha  \le \frac{\pi }{3};l > 0)\). Gọi \({\rm N}\) là khối tròn xoay thu được khi quay tam giác đó xung quanh trục Ox (Hình 35). Tính thể tích của \({\rm N}\) theo \(\alpha \) và \(l\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính thể tích hình nón

Lời giải chi tiết

Xét tam giác vuông OPM:

\(MP = OM.\sin \widehat {POM} = l.\sin \alpha \)

\(OP = OM.\cos \widehat {POM} = l.\cos \alpha \)

Khối tròn xoay là một hình nón có diện tích là: \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {l.\sin \alpha } \right)^2}.l.\cos \alpha  = \frac{1}{3}\pi {l^3}.{\sin ^2}\alpha \cos \alpha \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"