Đề bài
Cho đồ thị các hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\), y = x + 1 và hình phẳng được tô màu như hình 30
a) Hình phẳng đó được giới hạn bởi các đường nào?
b) Tính diện tích hình phẳng đó
Phương pháp giải - Xem chi tiết
a) Quan sát hình vẽ
b) Cho hàm số y = f(x), y = g(x) liên tục trên đoạn [a;b]. Khi đó, diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b là: \(S = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \)
Lời giải chi tiết
a) Hình phẳng đó được giới hạn bởi đồ thị hàm số y = x + 1, \(y = {\left( {\frac{1}{2}} \right)^x}\), đường thẳng x = 0 và x = 2
b) Diện tích hình phẳng đó là: \(S = \int\limits_0^2 {\left| {x + 1 - {{\left( {\frac{1}{2}} \right)}^x}} \right|} dx = \int\limits_0^2 {\left( {x + 1 - {{\left( {\frac{1}{2}} \right)}^x}} \right)} dx = \left. {\left( {\frac{{{x^2}}}{2} + x - \frac{{{{\left( {\frac{1}{2}} \right)}^x}}}{{ - \ln 2}}} \right)} \right|_0^2 \approx 2,92\)