Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

2024-09-14 19:33:33

Đề bài

a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023

b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Lời giải chi tiết

a) \(F(x) = \int {f(x)}  = \int {\left( {{x^2} + {e^{ - x}}} \right)dx}  = \frac{{{x^3}}}{3} - {e^{ - x}} + C\)

F(0) = 2023 => C = 2024

Vậy \(F(x) = \frac{{{x^3}}}{3} - {e^{ - x}} + 2024\)

b) \(\int {g(x)}  = \int {\frac{1}{x}dx}  = \ln x + C\)

G(1) = 2023 => C = 2022

Vậy \(G(x) = \ln x + 2023\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"