Bài 1.14 trang 9 SBT giải tích 12

2024-09-14 19:33:41

Đề bài

Phương trình nào sau đây có nghiệm duy nhất trên \(\mathbb{R}\)?

A. \(\left( {x - 5} \right)\left( {{x^2} - x - 12} \right) = 0\)

B. \( - {x^3} + {x^2} - 3x + 2 = 0\)

C. \({\sin ^2}x - 5\sin x + 4 = 0\)

D. \(\sin x - \cos x + 1 = 0\)

Phương pháp giải - Xem chi tiết

Loại đáp án, xét các đáp án bằng cách giải mỗi phương trình và suy ra số nghiệm.

Lời giải chi tiết

Đáp án A: \(\left( {x - 5} \right)\left( {{x^2} - x - 12} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\{x^2} - x - 12 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x =  - 3\\x = 4\end{array} \right.\) nên phương trình có \(3\) nghiệm.

Đáp án B: Xét hàm \(f\left( x \right) =  - {x^3} + {x^2} - 3x + 2 = 0\) có \(f'\left( x \right) =  - 3{x^2} + 2x - 3\) và \(\Delta ' = 1 - 9 =  - 8 < 0\) nên \(f'\left( x \right) < 0,\forall x \in \mathbb{R}\) hay hàm số \(f\left( x \right)\) nghịch biến trên \(\mathbb{R}\).

Mà \(f\left( 0 \right) = 2,f\left( 1 \right) =  - 1\) nên \(f\left( 0 \right).f\left( 1 \right) < 0\), hàm số \(f\left( x \right)\) liên tục trên \(\left[ {0;1} \right]\) nên phương trình có nghiệm \({x_0} \in \left( {0;1} \right)\).

Kết hợp với hàm số nghịch biến trên \(\mathbb{R}\) nên phương trình đã cho có nghiệm duy nhất trên \(\mathbb{R}\).

Chọn B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"