Bài 1.9 trang 8 SBT giải tích 12

2024-09-14 19:33:43

Đề bài

Khẳng định nào sau đây là đúng?

A. \(y = \sin 3x\) là hàm số chẵn.

B. Hàm số \(y = \dfrac{{\sqrt {3x + 5} }}{{x - 1}}\) xác định trên \(\mathbb{R}\).

C. Hàm số \(y = {x^3} + 4x - 5\) đồng biến trên \(\mathbb{R}\).

D. Hàm số \(y = \sin x + 3x - 1\) nghịch biến trên \(\mathbb{R}\).

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của mỗi đáp án, sử dụng tính chẵn lẻ, tính đơn điệu của hàm số.

Lời giải chi tiết

Đáp án A: TXĐ: \(D = \mathbb{R}\).

Có \(f\left( { - x} \right) = \sin \left( { - 3x} \right)\) \( =  - \sin 3x =  - f\left( x \right)\) nên hàm số \(y = \sin 3x\) lẻ trên \(\mathbb{R}\).

A sai.

Đáp án B: ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\) nên TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

B sai.

Đáp án C: TXĐ: \(D = \mathbb{R}\)

Có \(y' = 3{x^2} + 4 > 0,\forall x \in \mathbb{R}\) nên hàm số \(y = {x^3} + 4x - 5\) đồng biến trên \(\mathbb{R}\).

C đúng.

Chọn C.

 

Chú ý:

Ngoài ra các em cũng có thể kiểm tra thêm đáp án D: \(y' = \cos x + 3 > 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\). Do đó D sai.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"