Chứng minh các bất đẳng thức sau:
LG câu a
a) \(\tan x > \sin x\), \(0 < x < \dfrac{\pi }{2}\)
Phương pháp giải:
Xét hàm \(f\left( x \right) = \tan x - \sin x\) và chứng minh nó đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).
Từ đó suy ra điều phải chứng minh.
Giải chi tiết:
Xét hàm \(f\left( x \right) = \tan x - \sin x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) ta có:
\(f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} - \cos x\) \( = \dfrac{{1 - {{\cos }^3}x}}{{{{\cos }^2}x}} > 0\) với \(\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\) vì \(\cos x < 1\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) nên \({\cos ^3}x < 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)
Do đó hàm số \(f\left( x \right) = \tan x - \sin x\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\)
\( \Rightarrow f\left( x \right) > f\left( 0 \right) = 0\) \( \Rightarrow \tan x - \sin x > 0 \Leftrightarrow \tan x > \sin x\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\).
LG câu b
b) \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} < 1 + \dfrac{1}{2}x\) với \(x > 0\)
Phương pháp giải:
Xét các hàm số \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) và \(g\left( x \right) = \sqrt {1 + x} - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) và chứng minh chúng nghịch biến trên \(\left( {0; + \infty } \right)\).
Từ đó suy ra điều phải chứng minh.
Giải chi tiết:
Xét \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) trên \(\left( {0; + \infty } \right)\) ta có: \(f'\left( x \right) = \dfrac{1}{2} - \dfrac{1}{4}x - \dfrac{1}{{2\sqrt {x + 1} }}\).
Vì \(x > 0\) nên \(f'\left( x \right) < \dfrac{1}{2} - \dfrac{1}{4}.0 - \dfrac{1}{{2\sqrt {0 + 1} }} = 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)
Do đó \(f\left( x \right) < f\left( 0 \right) = 0\) \( \Rightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} < 0\) \( \Leftrightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} \,\,\left( 1 \right)\)
Xét \(g\left( x \right) = \sqrt {1 + x} - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) ta có: \(g'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} - \dfrac{1}{2}\)
Vì \(x > 0\) nên \(g'\left( x \right) < \dfrac{1}{{2\sqrt {0 + 1} }} - \dfrac{1}{2} = 0\) hay \(y = g\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)
Do đó \(g\left( x \right) < g\left( 0 \right) = 0\) hay \(\sqrt {1 + x} - 1 - \dfrac{1}{2}x < 0\) \( \Leftrightarrow \sqrt {1 + x} < 1 + \dfrac{1}{2}x\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} < 1 + \dfrac{1}{2}x\) với \(x > 0\). (đpcm)
[hoctot.me - Trợ lý học tập AI]