Bài 1.7 trang 8 SBT giải tích 12

2024-09-14 19:33:43

Chứng minh các bất đẳng thức sau:

LG câu a

a) \(\tan x > \sin x\), \(0 < x < \dfrac{\pi }{2}\)

Phương pháp giải:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) và chứng minh nó đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) ta có:

\(f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} - \cos x\) \( = \dfrac{{1 - {{\cos }^3}x}}{{{{\cos }^2}x}} > 0\) với \(\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\) vì \(\cos x < 1\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) nên \({\cos ^3}x < 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)

Do đó hàm số \(f\left( x \right) = \tan x - \sin x\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\)

\( \Rightarrow f\left( x \right) > f\left( 0 \right) = 0\) \( \Rightarrow \tan x - \sin x > 0 \Leftrightarrow \tan x > \sin x\)  với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\).


LG câu b

b) \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\)

Phương pháp giải:

Xét các hàm số \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) và \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) và chứng minh chúng nghịch biến trên \(\left( {0; + \infty } \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) trên \(\left( {0; + \infty } \right)\) ta có: \(f'\left( x \right) = \dfrac{1}{2} - \dfrac{1}{4}x - \dfrac{1}{{2\sqrt {x + 1} }}\).

Vì \(x > 0\) nên \(f'\left( x \right) < \dfrac{1}{2} - \dfrac{1}{4}.0 - \dfrac{1}{{2\sqrt {0 + 1} }} = 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(f\left( x \right) < f\left( 0 \right) = 0\) \( \Rightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x}  < 0\) \( \Leftrightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} \,\,\left( 1 \right)\)

Xét \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) ta có: \(g'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} - \dfrac{1}{2}\)

Vì \(x > 0\) nên \(g'\left( x \right) < \dfrac{1}{{2\sqrt {0 + 1} }} - \dfrac{1}{2} = 0\) hay \(y = g\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(g\left( x \right) < g\left( 0 \right) = 0\) hay \(\sqrt {1 + x}  - 1 - \dfrac{1}{2}x < 0\) \( \Leftrightarrow \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\). (đpcm)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"