Bài 1.31 trang 17 SBT giải tích 12

2024-09-14 19:33:47

Đề bài

Xác định giá trị của tham số \(m\) để hàm số sau không có cực trị: \(y = \dfrac{1}{3}m{x^3} + m{x^2} + 2\left( {m - 1} \right)x - 2\)

A. \(m \le 0\) hoặc \(m \ge 2\)

B. \(m \ge 0\)

C. \(0 \le m \le 2\)

D. \(m \in \left[ {0; + \infty } \right)\)

Phương pháp giải - Xem chi tiết

Hàm số đã cho không có cực trị nếu \(y'\) không đổi dấu trên \(\mathbb{R}\).

Lời giải chi tiết

Ta có: \(y' = m{x^2} + 2mx + 2\left( {m - 1} \right)\).

Hàm số đã cho không có cực trị nếu \(y'\) không đổi dấu trên \(\mathbb{R}\)

TH1: Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị (thỏa mãn y/c)

TH2: Nếu m ≠ 0 thì \(y'\) không đổi dấu trên \(\mathbb{R}\)

\( \Leftrightarrow m{x^2} + 2mx + 2\left( {m - 1} \right) = 0\) vô nghiệm hoặc có nghiệm kép

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta ' = {m^2} - 2m\left( {m - 1} \right) \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\ - {m^2} + 2m \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m \le 0\\m \ge 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 0\\m \ge 2\end{array} \right.\).

Kết hợp với TH1 ta được \(m \le 0\) hoặc \(m \ge 2\).

Chọn A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"