Bài 1.27 trang 17 SBT giải tích 12

2024-09-14 19:33:48

Đề bài

Hàm số \(y = {x^4} - 5{x^2} + 4\) có mấy điểm cực đại?

A. \(0\)                            B. \(2\)

C. \(3\)                            D. \(1\)

Phương pháp giải - Xem chi tiết

- Tính \(y'\) và tìm các nghiệm của \(y' = 0\).

- Tính \(y''\) và tính giá trị của \(y''\) tại các điểm trên.

- Kết luận dựa vào dấu của \(y''\): Các điểm làm cho \(y''\) mang dấu âm là điểm cực đại của hàm số.

Lời giải chi tiết

Ta có: \(y' = 4{x^3} - 10x = x\left( {4{x^2} - 10} \right)\); \(y'' = 12{x^2} - 10\).

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \dfrac{{\sqrt {10} }}{2}\end{array} \right.\).

+) \(y''\left( 0 \right) =  - 10 < 0\) nên hàm số đạt cực đại tại \(x = 0\).

+) \(y''\left( { \pm \dfrac{{\sqrt {10} }}{2}} \right) = 20 > 0\) nên hàm số đạt cực tiểu tại \(x =  \pm \dfrac{{\sqrt {10} }}{2}\).

Vậy hàm số chỉ có \(1\) điểm cực đại.

Chọn D.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"