Bài 1.23 trang 16 SBT giải tích 12

2024-09-14 19:33:56

Đề bài

Xác định m để hàm số: \(y = {x^3} - m{x^2} + \left( {m - \dfrac{2}{3}} \right)x + 5\)  có cực trị tại \(x = 1\). Khi đó, hàm số đạt cực tiểu hay đạt cực đại? Tính cực trị tương ứng.

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp điều kiện cần:

- Thay \(x = 1\) vào phương trình \(y' = 0\) tìm \(m\).

- Thay \(m\) vừa tìm được vào hàm số và kiểm tra.

Lời giải chi tiết

\(y = {x^3} - m{x^2} + \left( {m - \dfrac{2}{3}} \right)x + 5\)

Ta có:  \(y' = 3{x^2} - 2mx + m - \dfrac{2}{3}\)

Hàm số có cực trị tại \(x = 1\)\( \Rightarrow y'\left( 1 \right) = 3 - 2m + m - \dfrac{2}{3} = 0\)\( \Leftrightarrow m = \dfrac{7}{3}\).

Thử lại, với \(m = \dfrac{7}{3}\) thì hàm số đã cho trở thành: \(y = {x^3} - \dfrac{7}{3}{x^2} + \dfrac{5}{3}x + 5\)

Ta có:  \(y' = 3{x^2} - \dfrac{{14}}{3}x + \dfrac{5}{3}\); \(y'' = 6x - \dfrac{{14}}{3}\)

Vì \(y''\left( 1 \right) = 6 - \dfrac{{14}}{3} > 0\)  nên hàm số đạt cực tiểu tại \(x = 1\) và  \({y_{CT}} = y\left( 1 \right) = \dfrac{{16}}{3}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"