Bài 1.21 trang 16 SBT giải tích 12

2024-09-14 19:33:56

Đề bài

Xác định giá trị của m để hàm số sau có cực trị: \(y = {x^3} + 2m{x^2} + mx - 1\)

Phương pháp giải - Xem chi tiết

- Tính \(y'\).

- Hàm số có cực trị khi và chỉ khi \(y’\) đổi dấu trên \(R\).

Lời giải chi tiết

TXĐ: \(D = \mathbb{R}\)

Ta có: \(y' = 3{x^2} + 4mx + m\)

Hàm số có cực trị khi và chỉ khi \(y’\) đổi dấu trên \(R\).

\( \Leftrightarrow 3{x^2} + 4mx + m = 0\) có hai nghiệm phân biệt.

\(\begin{array}{l}
\Leftrightarrow \Delta ' > 0 \Leftrightarrow 4{m^2} - 3m > 0\\
\Leftrightarrow m\left( {4m - 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}
m < 0\\
m > \frac{4}{3}
\end{array} \right.
\end{array}\)

Vậy hàm số đã cho có cực đại, cực tiểu khi \(m < 0\) hoặc \(m > {3 \over 4}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"