Bài 1.18 trang 15 SBT giải tích 12

2024-09-14 19:34:01

Tìm cực trị của các hàm số sau:

LG a

\(\displaystyle y = {{x + 1} \over {{x^2} + 8}}\)

Lời giải chi tiết:

TXĐ : R

\(y' = \frac{{\left( {x + 1} \right)'\left( {{x^2} + 8} \right) - \left( {x + 1} \right)\left( {{x^2} + 8} \right)'}}{{{{\left( {{x^2} + 8} \right)}^2}}}\) \(= {{{x^2} + 8 - 2x(x + 1)} \over {{{({x^2} + 8)}^2}}} = {{ - {x^2} - 2x + 8} \over {{{({x^2} + 8)}^2}}}\)

\(y' = 0  \Leftrightarrow  - {x^2} - 2x + 8 = 0\) \(\Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr 
x = 2 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = 2\), cực tiểu tại \(x = - 4\) và \({y_{CD}} = y(2) = {1 \over 4};{y_{CT}} = y( - 4) =  - {1 \over 8}\)


LG câu b

\(\displaystyle y = {{{x^2} - 2x + 3} \over {x - 1}}\)

Lời giải chi tiết:

TXĐ: \(D = R\backslash \left\{ 1 \right\}\)

\(y' = \frac{{\left( {{x^2} - 2x + 3} \right)'\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)\left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^2}}} \) \(= \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}}\) \( = \frac{{2{x^2} - 4x + 2 - {x^2} + 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\) \( = {{{x^2} - 2x - 1} \over {{{(x - 1)}^2}}}\)

\(y' = 0  \Leftrightarrow {x^2} - 2x - 1 = 0\) \(\Leftrightarrow \left[ \matrix{
x = 1 - \sqrt 2 \hfill \cr 
x = 1 + \sqrt 2 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = 1 - \sqrt 2 \) và đạt cực tiểu tại \(x = 1 + \sqrt 2\) , ta có:

\({y_{CD}} = y(1 - \sqrt 2 ) =  - 2\sqrt 2 ;\) \({y_{CT}} = y(1 + \sqrt 2 ) = 2\sqrt 2 \).


LG c

\(\displaystyle y = {{{x^2} + x - 5} \over {x + 1}}\)

Lời giải chi tiết:

TXĐ: R\{-1}

\(y' = \frac{{\left( {{x^2} + x - 5} \right)'\left( {x + 1} \right) - \left( {{x^2} + x - 5} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \) \(= \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {{x^2} + x - 5} \right)}}{{{{\left( {x + 1} \right)}^2}}} \) \( = \frac{{2{x^2} + 3x + 1 - {x^2} - x + 5}}{{{{\left( {x + 1} \right)}^2}}}\) \(= {{{x^2} + 2x + 6} \over {{{(x + 1)}^2}}} > 0,\forall x \ne  - 1\)

(vì \(\left\{ \begin{array}{l}
{x^2} + 2x + 6 = {\left( {x + 1} \right)^2} + 5 > 0\\
{\left( {x + 1} \right)^2} > 0,\forall x \ne - 1
\end{array} \right.\))

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { -1;+ \infty } \right)\) do đó không có cực trị.


LG d

\(\displaystyle y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)

Lời giải chi tiết:

\(y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)

Vì \({x^2}-2x + 5>0,\forall x\in R\) nên hàm số xác định trên \(R\).

\(y' = \frac{{\left[ {{{\left( {x - 4} \right)}^2}} \right]'\left( {{x^2} - 2x + 5} \right) - {{\left( {x - 4} \right)}^2}\left( {{x^2} - 2x + 5} \right)'}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}\) \(= {{2(x - 4)({x^2} - 2x + 5) - {{(x - 4)}^2}(2x - 2)} \over {{{({x^2} - 2x + 5)}^2}}} \) \( = \frac{{2\left( {x - 4} \right)\left( {{x^2} - 2x + 5} \right) - 2{{\left( {x - 4} \right)}^2}\left( {x - 1} \right)}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}  \) \(= \frac{{2\left( {x - 4} \right)\left[ {{x^2} - 2x + 5 - \left( {x - 4} \right)\left( {x - 1} \right)} \right]}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}  \) \( = \frac{{2\left( {x - 4} \right)\left( {{x^2} - 2x + 5 - {x^2} + 5x - 4} \right)}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}\) \(= {{2(x - 4)(3x + 1)} \over {{{({x^2} - 2x + 5)}^2}}}\)

\(y' = 0 \)

\(\Leftrightarrow 2\left( {x - 4} \right)\left( {3x + 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}
3x + 1 = 0\\
x - 4 = 0
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = - {1 \over 3} \hfill \cr 
x = 4 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x =  - {1 \over 3}\) , đạt cực tiểu tại \(x = 4\) và \({y_{CD}} = y( - {1 \over 3}) = {{13} \over 4};{y_{CT}} = y(4) = 0\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"