Bài 1.54 trang 25 SBT giải tích 12

2024-09-14 19:34:10

Đề bài

Cho hàm số \(y = \dfrac{{3x - 1}}{{x + 4}}\). Gọi \(I\) là giao điểm của hai đường tiệm cận. Tính \(OI\).

A. \(3\)                                  B. \(6\)

C. \(5\)                                  D. \(2\)

Phương pháp giải - Xem chi tiết

- Tìm phương trình hai đường tiệm cận.

- Tìm giao điểm \(I\) và suy ra khoảng cách.

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3x - 1}}{{x + 4}} = 3\) nên \(y = 3\) là đường tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ + }} \dfrac{{3x - 1}}{{x + 4}} =  - \infty \) nên \(x =  - 4\) là đường tiệm cận đứng.

Do đó \(I\left( { - 4;3} \right)\) là giao điểm hai đường tiệm cận.

\( \Rightarrow OI = \sqrt {{{\left( { - 4} \right)}^2} + {3^2}}  = 5\).

Chọn C.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"