Bài 1.69 trang 38 SBT giải tích 12

2024-09-14 19:34:13

Đề bài

Hàm số \(y = {x^4} + \left( {{m^2} - 4} \right){x^2} + 5\) có ba cực trị khi:

A. \( - 2 < m < 2\)             B. \(m = 2\)

C. \(m <  - 2\)                    D. \(m > 2\)

Phương pháp giải - Xem chi tiết

Hàm đa thức bậc bốn có ba điểm cực trị \( \Leftrightarrow \) phương trình \(y' = 0\) có ba nghiệm phân biệt.

Lời giải chi tiết

Ta có: \(y' = 4{x^3} + 2\left( {{m^2} - 4} \right)x\);

\(y' = 0 \Leftrightarrow 2x\left[ {2{x^2} + \left( {{m^2} - 4} \right)} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\2{x^2} + {m^2} - 4 = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = \dfrac{{4 - {m^2}}}{2}\,\,\,(*)\end{array} \right.\)

Hàm số đã cho có \(3\) điểm cực trị \( \Leftrightarrow \) phương trình \(y' = 0\) có ba nghiệm phân biệt

\( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(0\) \( \Leftrightarrow \dfrac{{4 - {m^2}}}{2} > 0\)\( \Leftrightarrow 4 - {m^2} > 0\)\( \Leftrightarrow  - 2 < m < 2\).

Chọn A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"