Bài 1.59 trang 36 SBT giải tích 12

2024-09-14 19:34:27

Đề bài

Tìm giá trị của tham số \(m\) để hàm số \(y = (m - 1){x^4} - m{x^2} + 3\)  có đúng một cực trị.

Phương pháp giải - Xem chi tiết

- Tính \(y'\).

- Điều kiện để hàm số đã cho có đúng một cực trị là phương trình \(y' = 0\) có nghiệm duy nhất \(x = 0\).

Lời giải chi tiết

+) Với \(m = 1\) thì \(y =  - {x^2} + 3\) là hàm đa thức bậc hai luôn có một cực trị nên thỏa mãn.

+) Với \(m \ne 1\) thì hàm số đã cho là hàm bậc bốn trùng phương có:

\(y' = 4(m - 1){x^3} - 2mx\)\( = 2x\left[ {2(m - 1){x^2} - m} \right]\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\2\left( {m - 1} \right){x^2} - m = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = \dfrac{m}{{2\left( {m - 1} \right)}}\,\,\left( 1 \right)\end{array} \right.\)

Hàm số có đúng một cực trị khi \(y' = 0\) có đúng một nghiệm, tức là:

Phương trình \(\left( 1 \right)\) có nghiệm duy nhất \(x = 0\) hoặc vô nghiệm \( \Leftrightarrow \left[ \begin{array}{l}m = 0\\\dfrac{m}{{2\left( {m - 1} \right)}} < 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}m = 0\\0 < m < 1\end{array} \right. \Leftrightarrow 0 \le m < 1\).

Kết hợp với \(m = 1\) ở trên ta được \(0 \le m \le 1\).

Vậy với \(0 \le m \le 1\) hàm số đã cho có một cực trị duy nhất.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"