Bài 1.58 trang 36 SBT giải tích 12

2024-09-14 19:34:28

Tìm giá trị của tham số \(m\) để hàm số

LG a

\(y = {x^3} + (m + 3){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' = 3{x^2} + 2(m + 3)x + m\)

Hàm số đạt cực tiểu tại \(x = 1\) thì: \(y'(1) = 0 \Leftrightarrow 3m + 9 = 0 \Leftrightarrow m =  - 3\)

Thử lại, \(m =  - 3\) thì \(y = {x^3} - 3x - 2\).

Khi đó, \(y' = 3{x^2} - 3 = 0 \Leftrightarrow x =  \pm 1\).

\(y'' = 6x;y''(1) = 6 > 0\) nên \(x = 1\) là điểm cực tiểu của hàm số (thỏa mãn yêu cầu)

Suy ra hàm số đạt cực tiểu tại \(x = 1\) khi \(m = 3\)


LG b

\(y =  - \dfrac{1}{3}({m^2} + 6m){x^3} - 2m{x^2} + 3x + 1\)  đạt cực đại tại \(x =  - 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' =  - ({m^2} + 6m){x^2} - 4mx + 3\)

\(y'( - 1) =  - {m^2} - 6m + 4m + 3\)\( = ( - {m^2} - 2m - 1) + 4 =  - {(m + 1)^2} + 4\)

Hàm số đạt cực đại tại \(x =  - 1\) thì :

\(y'( - 1) =  - {(m + 1)^2} + 4 = 0\)\( \Leftrightarrow {(m + 1)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m =  - 3\\m = 1\end{array} \right.\)

Thử lại,

+) Với \(m =  - 3\) ta có \(y' = 9{x^2} + 12x + 3\)

\( \Rightarrow y'' = 18x + 12\)\( \Rightarrow y''\left( { - 1} \right) =  - 18 + 12 =  - 6\; < 0\)

Suy ra hàm số đạt cực đại tại \(x =  - 1\) (thỏa mãn).

+) Với \(m = 1\) ta có:

\(y' =  - 7{x^2} - 4x + 3\)\( \Rightarrow y'' =  - 14x - 4\) \( \Rightarrow y''( - 1) = 10 > 0\)

Suy ra hàm số đạt cực tiểu tại \(x =  - 1\) (loại).

Kết luận: Hàm số đã cho đạt cực đại tại \(x =  - 1\) khi \(m =  - 3\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"